A HIGH-RESOLUTION C.P.-M.A.S. ¹³C-N.M.R. STUDY OF SOLID-STATE CYCLOMALTOHEXAOSE INCLUSION-COMPLEXES: CHEMICAL SHIFTS AND STRUCTURE OF THE HOST CYCLOMALTOHEXAOSE

YOSHIO INOUE*, TAKEHIRO OKUDA, AND RIICHIRÔ CHÛJÔ

Department of Polymer Chemistry, Tokyo Institute of Technology, O-okayama 2-chome, Meguro-ku, Tokyo 152 (Japan)

(Received December 20th, 1984; accepted for publication, February 14th, 1985)

ABSTRACT

High-resolution, solid-state ¹³C-n.m.r. spectra were obtained for several crystalline cyclomaltohexaose inclusion-complexes. The resonances of C-1, C-4, and C-6 of the host were dispersed. The averaged ¹³C shifts of these resonances were in good agreement with the ¹³C shifts observed in solution, where the dispersion due to conformational diversity is expected to be averaged by rapid interconversion of the conformers. This result indicates that the most plausible source of the solid-state ¹³C-shift dispersions of the resonances of C-1 and C-4 is the diversity of conformations about the glycosidic linkage. The molecular origins of conformation-dependent ¹³C shifts are discussed.

INTRODUCTION

The cycloamyloses (cyclodextrins, CD) are cyclic oligosaccharides composed of at least six (1 \rightarrow 4)-linked α -D-glucosyl residues, which have the shape of a hollow, truncated cone with primary and secondary hydroxyl-groups crowning the narrower and wider rims, respectively. Each CD can accept various guest molecules into its cavity and form inclusion complexes in the solid state as well as in solution¹.

High-resolution ¹³C-n.m.r. spectroscopy is one of the most useful methods in the analysis of the structure and molecular dynamics of CD inclusion-complexes both in aqueous solution^{2–8} and in the solid state^{9–11}. In recent years, the techniques of high-power dipolar decoupling, cross-polarisation (c.p.), and magicangle spinning (m.a.s.) have been developed to observe high-resolution, high signal-to-noise ratio n.m.r. spectra of dilute nuclei, such as ¹³C, in the solid state¹². The ¹³C shifts observed in the solid by c.p.-m.a.s. methods are usually quite similar to those observed in solution, but fixation of the molecular geometry and packing in the solid state bring about different chemical shifts even for nuclei that are

^{*}To whom inquiries should be addressed.

chemically equivalent in solution. Thus, ¹³C shifts in the solid state may be used in the elucidation of both molecular and crystal structures.

Earlier, 13 C-n.m.r. studies of aqueous solutions of cyclomaltohexaose (α -CD) inclusion-complexes with various guest compounds revealed a linear correlation between the complexation-induced 13 C shifts of the resonance of C-1 and the enthalpy change (ΔH) on complexation⁶. This correlation has been considered to reflect the nature of the bonding between α -CD and the guests, by relating the observed 13 C shifts of the C-1 resonance to conformational changes of the glycosyl residues without any verification⁶. Although the chemical shifts of the C-1 resonance of amylose in solution have been reported to be sensitive to the conformation of the glycosidic linkage 13 , in general the 13 C shifts of the C-1 resonance observed in solution do not reflect any particular conformer of the α -CD macrocycle or glycosidic linkage but the average of rapidly interconverting conformers 2,7 . Therefore, observations of solid-state c.p.-m.a.s. 13 C-n.m.r. spectra of crystalline α -CD inclusion-complexes, the crystallographic structures of which have been analysed by X-ray methods, are of particular interest for the elucidation of the origins of 13 C shifts of α -CD resonances on complexation.

We now report on the c.p.-m.a.s. ¹³C-n.m.r. spectral features of α-CD in the inclusion complexes with water, *p*-nitrophenol (PNP), *p*-hydroxybenzoic acid (PHBA), *m*-nitrophenol (MNP) and benzoic acid (BA). The last four of these complexes in aqueous solution have been characterised by ¹H- and ¹³C-n.m.r. spectroscopy^{3,5,6,14-18}, and the molecular structures of the first four complexes have been characterised¹⁹⁻²¹ by X-ray diffraction. The c.p.-m.a.s. ¹³C-n.m.r. chemical shifts and line shapes have been analysed¹¹ for PNP, PHBA, MNP, and BA in the solid-state CD inclusion-complexes.

EXPERIMENTAL

Materials. — All compounds were recrystallised from aqueous solution before use. The α -CD inclusion-complexes of PNP, PHBA, MNP, and BA were obtained by slowly cooling a hot, saturated, equimolar aqueous solution of α -CD and the respective guest. The hydrated α -CD crystal was also grown from aqueous solution. Three crystal forms have been reported for α -CD · water complexes¹⁹; two of these are hexahydrates (forms I and II), and the other is a 7.57 hydrate (form III). Since form I grows preferentially under normal conditions^{19b}, the crystal obtained by us must be this form; α -CD molecules in form I and II have almost identical conformations^{19b}.

Methods. — C.p.-m.a.s. 13 C-n.m.r. spectra (50 MHz) were recorded with a JEOL JNM FX-200 spectrometer and a c.p.-m.a.s. accessory. C.p. was carried out with r.f. field-strengths of $\sim 1.5 \times 10^{-3}$ T (1 H) and $\sim 6.0 \times 10^{-3}$ T (13 C), and a contact time of 2 or 5 ms. The m.a.s. rate was ~ 3.5 kHz. The spinning side-bands were not removed artificially, since they did not overlap with any other resonances and their intensities were insignificant. Samples of ~ 300 mg were measured in Kel-F bullet-

type rotors²² (5.8-mm i.d.). The ¹³C chemical shifts were referenced to the high-field resonance of external adamantane and were converted to the Me₄Si scale by adding 29.7 p.p.m. to the measured chemical shifts.

RESULTS

Figs. 1–5 show c.p.–m.a.s. 13 C-n.m.r. spectra of the α -CD inclusion-complexes investigated. Peak assignments for α -CD are based on the literature data $^{9-11}$. The resonances of C-1, C-4, and C-6 were well differentiated, but those of C-2, C-3, and C-5 overlapped severely. Some of the C-1, C-4, and C-6 resonances of α -CD in complexes with water, PNP, PHBA, and BA were split into two or more peaks, and others were broadened; the C-1 and C-4 resonances of α -CD in the complex with MNP were sharp singlets.

The 13C chemical shifts of α -CD in the solid state are summarised in Table I. The number of atoms which contributed to each peak of a given resonance was estimated roughly and normalised to 6, and the results are shown in parentheses for some carbon atoms. The weight-averaged chemical shifts are also shown for these carbon atoms. For comparison, the 13 C chemical shifts observed in aqueous solution are also shown in Table I. In almost all instances, the 13 C shifts for single-peak resonances and the weight-averaged 13 C shifts for the multiplets of C-1, C-4, and C-6, observed in the solid state, are in good agreement with the 13 C shifts of the

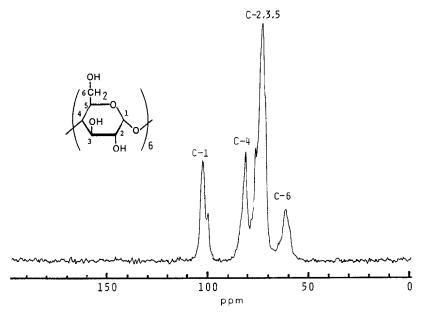


Fig. 1. C.p.-m.a.s. 13 C-n.m.r. spectrum of the α -CD \cdot H₂O inclusion-complex (contact time, 2 ms; 400 scans with a repetition time of 5.0 s).

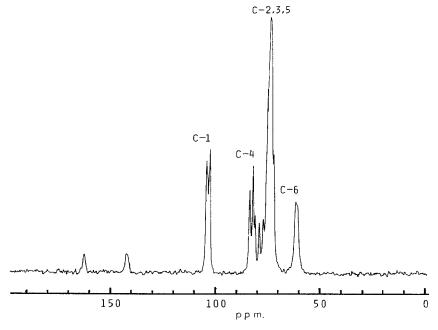


Fig. 2. C.p.-m.a.s. 13 C-n.m.r. spectrum of the α -CD · PNP inclusion-complex (contact time, 2 ms; 700 scans with a repetition time of 5.0 s). The signals at lower field are the resonances of PNP¹¹.

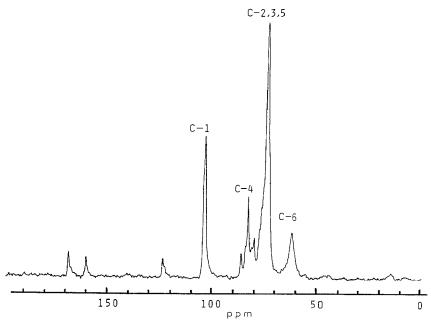


Fig. 3. C.p.-m.a.s. 13 C-n.m.r. spectrum of the α -CD · PHBA inclusion-complex (contact time, 2 ms; 700 scans with a repetition time of 5.0 s). The signals at lower field are the resonances of PHBA 11 .

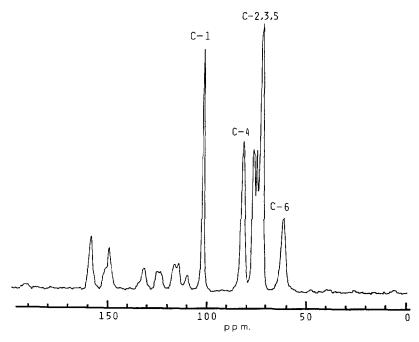


Fig. 4. C.p.-m.a.s. 13 C-n.m.r. spectrum of the α -CD · MNP inclusion-complex (contact time, 5 ms; 8000 scans with a repetition time of 8.0 s). The signals at lower field are the resonances of MNP¹¹.

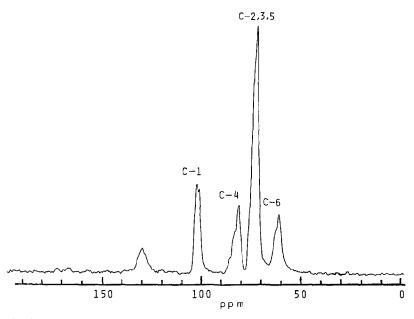


Fig. 5. C.p.-m.a.s. 13 C-n.m.r. spectrum of the α -CD \cdot BA inclusion-complex (contact time, 2 ms; 650 scans with a repetition time of 5.0 s). The signals at lower field are the resonances of BA 11 .

TABLE I 13 C Chemical shifts (p.p.m. relative to external Me₄Si) of α -CD in α -CD inclusion-complexes in the solid state and in solution^{a b}

Complex	State	C-1	C-4	C-2,3,5	C-6	Ref
α-CD·H ₂ O	Solid	102.9(5) 100 2(1) av. 102.4	81.6(b) (6)	76 5 73.2(b)	61.8(b) (6)	
u CD 1120	Solution	102.41	82 26	72.88; 74.47; 73.07	61.59	6
α-CD · PNP	Solid	104.3(3) 102.7(3) av 103 5	83.4(2) 82.0(2) 81.0(1) 78.8(1)	76.9 74.1(b) 72.1	61 5(3) 60.5(3) av 61 0	
	Solution	102.83	av. 81.7 ₅ 82 36	72.83; 74.84; 72.87	61.13	6
α-CD · PHBA	Solid	103.5(b)	85.8(1) 83.7(1) 82 4(2) 80 9(1) 79.6(1) av. 82.4 ₇	73.8(b) ^c	61.7(b) (6)	
	Solution	102.90	82 32	73.02; 74.78, 72.56	61.12	6
α-CD · MNP	Solid	101.8(6)	81 9(6)	76.5 74.7 72.1	60 9(6)	
	Solution	102.83	82 40	72.90; 74 72, 72 92	61.17	6
α-CD · BA	Solid	103.1(4) 101.7(2)	83.6(3) 81.8(3)	73.1(b) ^c	61.2(b) (6)	
	Solution	av 102 6 102.87	av. 82 7 82 30	72.99; 74.71; 72.68	61.15	6

^aNumbers shown in parentheses are roughly estimated numbers of atoms (total 6) which contribute to a given peak. ^bAv. means weight-averaged chemical shift, b denotes broad 'Not discriminated in the solid-state spectra

corresponding carbon atoms observed for aqueous solutions, within a probable experimental error of ± 0.5 p.p.m.

DISCUSSION

The possible origins of the splittings and/or dispersions in the solid-state 13 C resonances of C-1, C-4, and C-6 of α -CD were examined first. Solid-state c.p.–m.a.s. 13 C line-widths are typically 10–100 times broader than those in the liquid

state and a large fraction of the solid-state line-width is due to chemical shift dispersion²³⁻²⁵. This dispersion has been attributed to magnetic susceptibility effects, solid-state magnetic inequivalences, and variations in bond angles, conformations, and molecular packing²³⁻²⁵. α -CD is not expected to have significant local or bulk magnetic anisotropies since there are no relevant chemical structures. Possible anisotropic magnetic effects of the included aromatic compounds on the C-1, C-4, and C-6 resonances should also be insignificant, since significant dispersions of these resonances were observed in α -CD complexes of water, PNP, PHBA, and BA, but not in the α -CD · MNP complex.

The relevance of the conformational variations to the chemical shift dispersions of the C-1, C-4, and C-6 resonances is suggested by the fact that the ¹³C shifts for singlets and the weight-averaged ¹³C shifts for multiplets in the solid state are in good agreement with the ¹³C shifts of the corresponding carbon atoms observed for aqueous solutions. In solution, ¹³C shift dispersion due to conformational variations is averaged by rapid interconversion of possible conformers.

It has been proposed⁹ that the ¹³C shifts of the C-1 and C-4 resonances of α -CD are related to the dihedral angles ϕ and ψ at the glycosidic linkage, respectively. Here, the angles ϕ and ψ are defined as the torsion angles $O(n,4) \cdot \cdot \cdot C(n,1) - O(n+1,4) - C(n+1,4)$ and C(n,1) - O(n+1,4) - C(n+1,4) - C(n+1,4) - C(n+1,4)1,4) · · · O(n+2,4), respectively (n indicates ^{19a} the nth glucosyl residue of α -CD). According to this proposal⁹, the C-1 peaks appearing in the ranges 99.0–100.7 and 101.9–102.7 p.p.m. are ascribed, respectively, to ϕ values of 169 \pm 7° and 160 \pm 2°; the C-4 peaks in the ranges 75.6-76.2, 80.1-80.9, and 81.1-82.3 p.p.m. are ascribed, respectively, to ψ values of -150 \pm 5°, -168 \pm 9°, and -183 \pm 7°. This proposal has shortcomings. It is easy to find exceptions to the stated dihedral angles, although the corresponding resonances appear within the specified ranges. For example, the reported set of dihedral angles (ϕ, ψ) of the form I α -CD · H₂O complex is (162.6, -169.9), (165.9, -172.9), (147.6, -181.4), (147.4, -131.2), (160.9, -175.8), and (171.1, -162.6), which contains several angles out of the specified range, while the observed ¹³C shifts lie in the allowed range, i.e., 100.0– 102.9 p.p.m. for C-1 and 81.6 p.p.m. (broad) for C-4 resonances. Further, according to this proposal, the relative intensities of these split peaks cannot be explained. For example, the reported ϕ values of the α -CD · 1-propanol complex (169.6, $170.6, 168.4, 159.3, 171.1, 160.8)^{26}$. Thus, the intensity ratio of the higher- (100.4) p.p.m.) to the lower-field peaks (102.7 p.p.m.) of the C-1 resonance must be 4:2, but the experimental findings of the C-1 splittings (Fig. 1c of ref. 9) are clearly the reverse, i.e., between 2:4 and 1:5. Although the c.p.-m.a.s. technique, by its nature, does not yield completely reliable, quantitative spectral intensities, the general comparisons between intensities of peaks among the same resonance in a given spectra are valid²⁷. What is more important is that the conformation of the glycosidic linkage is defined not by ϕ or ψ alone but by both ϕ and ψ . The definitions of (ϕ, ψ) involve "virtual" O-4 · · · C-1 and C-4 · · · O-4 bonds, and thus they depend also on the conformation of the glucopyranose ring. The (ϕ, ψ) set is useful

for describing the overall α -CD macrocyclic conformation^{19a} but is not the best parameter for describing the conformation of the glycosidic linkage.

Quantitatively, the rotational state about the glycosidic linkage is more pertinently specified²⁸ by four angles ϕ_1 , ϕ_1' , ϕ_2 , and ϕ_2' , which specify, respectively, the torsion angles O-5—C-1—O-4'—C-4', C-2—C-1—O-4'—C-4', C-1—O-4'—C-4'— C-3', and C-1—O-4'—C-5'. Although it is very difficult to find general correlations between these four angles and the extent of the ¹³C shift dispersions, qualitatively it may be said that the smaller the distribution of these four angles, the narrower is the ¹³C shift dispersion. For example, six sets of $(\phi_1, \phi_1', \phi_2, \phi_2')$ for form I of the α -CD · H₂O crystal^{19a} are widely distributed as follows, (112.8, -126.5, 135.3, -103.2), (104.8, -136.7, 131.0, -110.5), (107.5, -133.0, 128.4, -115.4), (88.2, -150.0, 116.6, -123.7), (90.4, -151.9, 170.4, -69.3), and (100.7, -138.8, 120.6, -118.5), and correspondingly the ¹³C shift dispersions of the C-1 and C-4 resonances are larger than those of the α -CD · MNP complex²¹; two sets of (111.5, -130.3, 127.8, -114.7), two sets of (107.2, -132.4, 129.9, -112.7), and two sets of (113.1, -129.3, 129.1, -116.4), giving the corresponding C-1 and C-4 resonances as sharp singlets. These results also support the expectation that the variations in the ¹³C shifts of the C-1 and C-4 resonances are associated with the conformation of the glycosidic linkage.

In seeking to clarify the molecular origin(s) of the conformation-dependence of the ¹³C shifts of C-1 and C-4 resonances, the model of Grant and Cheney^{29,30} can be employed as a good approximation to see how the ¹³C chemical shift is affected by the through-space steric perturbations. According to the steric hindrance model of Grant and Cheney, the ¹³C shift of a CH group is influenced by the mutual repulsion of the bonded hydrogen atom and a nearby non-bonded hydrogen atom. The expression of the model is $\Delta \delta = -1680\cos\theta \exp(-26.71r)$, where $\Delta \delta$ is the chemical shift difference (p.p.m.), r is the hydrogen-hydrogen distance in nm, and θ is the angle between the CH bond and the inter-hydrogen separation vector. The examination of a CPK space-filling model suggests that the main steric interaction, which is expected to influence significantly the ¹³C shifts of the C-1 and C-4 resonances and the strength of which depends on the conformation of the glycosidic linkage, is the H-1—H-4 repulsion. Fig. 6 shows a part of the ¹³C shift map of the C-4 resonance perturbed by the H-1—H-4 repulsion, calculated as a function of ϕ_1 and ϕ_2 using the above expression. The bond lengths and the bond angles are assumed to be constant, i.e., C-O and C-H bond lengths are 0.143 and 0.109 nm, and C-O-C and O-C-H bond angles are 119.00° and 109.47°, respectively. Fig. 6 generally demonstrates the non-monotonous dependence of steric perturbation of the C-4 shifts on the conformation of the glycosidic linkage. The same is also true for the C-1 resonance. Actually, the bond length and the bond angle are not always constant for the six glucopyranosyl residues of α -CD. Thus, the chemical shift dispersions of the C-1 and C-4 resonances due to steric perturbation were calculated for α -CD complexes with water, PNP, and PHBA, for which the X-ray crystallographic data, including the coordinates of hydrogen atoms, have been reported^{19a,20}. The results in Table II clearly show that the observed magnitude of the ¹³C shift dispersions of the C-1 and C-4 resonances could be brought about by conformation-dependent, hydrogen-hydrogen steric repulsion. Unfortunately, however, the calculated results could not reproduce quantitatively the observed resonances. To explain more quantitatively the ¹³C shift dispersion, the contributions from other intra- and inter-molecular shielding effects must be taken into account, and/or a more pertinent expression must be used for steric perturbation.

Similar 13 C shift dispersions have been observed for the C-1 and C-4 resonances of several types of cellulose and their derivatives $^{31-36}$. At present, there are different explanations to account for the multiplets of the C-1 and C-4 resonances of cellulose, *e.g.*, the existence of conformational diversity of glycosidic linkages, existence of polymorphs, existence of independent chains in the unit cell, or molecular packing effects. For α -CD, the molecular packing effects could not be fully excluded. The packing state of α -CD molecules in the crystal of an α -CD inclusion-complex depends on the type of guest molecule. The crystal of the form I α -CD · H₂O complex is a cage type^{19a}, those in the α -CD · PNP and α -CD · PHBA complexes are layer types²⁰, and that in the α -CD · MNP complex is a channel type²¹. In the crystal of the α -CD · MNP complex, the symmetry of α -CD molecular packing as well as that of the α -CD macrocycle are very high as compared with those in other complexes. Such differences in molecular packing can also contribute more or less to the 13 C shift dispersions of the C-1, C-4, and C-6 resonances.

For the α -CD C-6 resonances, it has also been proposed that the ¹³C shifts

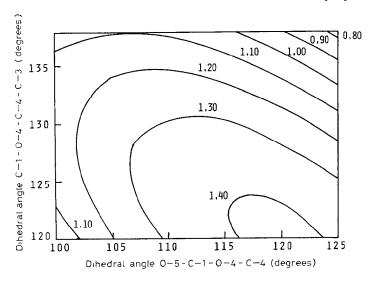


Fig. 6. Dependence of 13 C chemical shifts (in p.p.m.) of the C-4 resonance of α -CD on the dihedral angles of the glycosidic linkage, O-5---C-1---O-4---C-4 and C-1---O-4---C-3, calculated by using the expression of Grant and Cheney^{29,30}. Bond lengths (C-O, C-H) and bond angles (C-O-C, O-C-H) are assumed to be constant (0.143, 0.109 nm, and 119.00 and 109.47°, respectively).

TABLE II
PREDICTED SOLID-STATE 13 C CHEMICAL SHIFTS (p.p.m.) OF THE C-1 AND C-4 RESONANCES OF $lpha$ -CD a

Glucosyl residue ^h	α - $CD \cdot F$	α-CD · PNP		α-CD · PHBA		
	C-1	C-4	C-1	C-4	C-1	C-4
1	-1.10	-0.93	-4.05	-1.29	-0 62	-1.12
2	-0 82	-0.94	-2.00	-0.35	-0.79	-0.79
3	-0.80	-0.82	-0.56	-0.63	-147	-1.04
4	-0.17	-0.68	-0.61	-2.58	-0.38	-2.14
5	-0.45	-0.39	-2.71	-0.83	-0.25	-0.47
6	-0 77	0.66	-0.54	-2.09	-217	-1.07

^aCalculated using the expression of Grant and Cheney^{29,30}; a negative sign indicates a low-field shift ^bThe numbers of glucosyl residues correspond to those indicated in the X-ray crystallographic studies. *i.e.*, in ref. 19 for α-CD · H₂O, and in ref. 20 for α-CD · PNP and α-CD · PHBA complexes

can be attributed to the conformation about the C-5-C-6 bond⁹, *i.e.*, the C-6 signals that appear in the ranges 61.1-62.1 and 60.1-60.7 p.p.m. are assigned to gauchetrans and gauche-gauche conformations, respectively, as viewed from the C-6-O-6 orientation with respect to the C-4—C-5 and O-5—C-5 bonds. With these assignments, the appearance of the C-6 resonances of all α -CD complexes could not be explained quantitatively. For example, of the six CH₂OH groups in the a-CD · PNP complex²⁰, 0.5 adopt a gauche-trans conformation and 5.5 adopt a gauche-gauche conformation. Thus, the expected intensity ratio of gauche-trans to gauche-gauche peaks is 0.5:11.5, whereas the observed ratio of peaks at 61.5 and 60.5 p.p.m. is 1:1. Further, for the α -CD · MNP complex²¹, the α -CD molecule contains three gauche-trans and three gauche-gauche conformers, whereas the C-6 resonance is a sharp peak at 60.9 p.p.m. For the ¹³C shifts of the C-6 resonance, effects other than conformation, such as molecular packing and hydrogen bonding, must also be considered. Also, the C-6—O-6 bond-lengths in the α -CD · MNP complex are abnormally short (0.1171-0.1249 nm), compared with those in other complexes (e.g., 0.1416–0.1445 nm in form I of the α -CD · H₂O complex). These short bond-lengths must also influence the ¹³C shift of the C-6 resonance.

Finally, mention should be made of the linear relationship between the 13 C shifts induced in the α -CD C-1 resonance by complexation and the thermodynamic parameters for forming α -CD inclusion-complexes. We have shown that the most plausible source of the solid-state 13 C shift dispersions of the α -CD C-1 and C-4 resonances is the diversity of the conformations about the glycosidic linkages. The fact that the (averaged) 13 C shifts of α -CD observed in the solid state are in good agreement with those observed in solution suggests that the 13 C shift of the C-1 singlets observed in solution is the average of the shifts of C-1 in the six units, each of which is involved in a glycosidic linkage having a specific conformation corresponding to that in the solid state. Averaging of the 13 C shifts in solution is made by conformational interconversion, which is sufficiently rapid on the n.m.r. time-

scale. The same situation is also valid for the C-4 resonance. The rapid interconversion is revealed by observing ¹³C spin-lattice relaxation times^{2,7}, which indicate the rapid internal motion of the α-CD macrocycle as well as the included guest molecule. That the ¹³C shift displacement of the C-1 resonance upon complexation in solution mainly arises from the change in average conformation of glycosidic linkages is consistent with the proposal of Gelb *et al.*⁶. No correlation was found between the reported ¹³C shift displacements of the C-4 resonance and the thermodynamic parameters⁶, although C-1 and C-4 are both involved in the glycosidic linkage and the ¹³C shifts of both are sensitive to the conformation of the glycosidic linkage. It is not clear why the ¹³C shifts of the C-1 resonance correlate well with the thermodynamic parameters whereas those of the C-4 resonance do not.

ACKNOWLEDGMENTS

The authors thank Dr. T. Fujito and Mr. K. Deguchi (JEOL Ltd.) for recording the c.p.-m.a.s. ¹³C-n.m.r. spectra, and Mr. N. J. Maeji of this institute for helpful discussion.

REFERENCES

- R. J. BERGERON, J. Chem. Educ., 54 (1977) 204-207; M. L. BENDER AND M. KOMIYAMA, Cyclodextrin Chemistry, Springer-Verlag, New York, 1978; W. SAENGER, Angew. Chem. Int. Ed. Engl., 19 (1980) 344-362; W. L. HINZE, Sep. Purif. Methods, 10 (1981) 159-237; I. TABUSHI, Acc. Chem. Res., 15 (1982) 66-72.
- 2 J. P. BEHR AND J. M. LEHN, J. Am. Chem. Soc., 98 (1976) 1743-1747.
- 3 R. J. BERGERON AND M. A. CHANNING, Bioorg. Chem., 5 (1976) 437-449.
- 4 R. I. GELB, L. M. SCHWARTZ, AND D. A. LAUFER, J. Am. Chem. Soc., 100 (1978) 5875-5879.
- 5 R. J. BERGERON AND M. A. CHANNING, J. Am. Chem. Soc., 101 (1979) 2511–2516.
- 6 R. I. Gelb, L. M. Schwartz, B. Cardelino, H. S. Fuhrman, R. F. Johnson, and D. A. Laufer, J. Am. Chem. Soc., 103 (1981) 1750–1757.
- 7 Y. INOUE AND Y. MIYATA, Bull. Chem. Soc. Jpn., 54 (1981) 809-816.
- 8 Y. INOUE, H. HOSHI, M. SAKURAI, AND R. CHÚJÓ, J. Am. Chem. Soc., 107 (1985) 2319-2323.
- 9 H. SAITO, G. IZUMI, T. MAMIZUKA, S. SUZUKI, AND R. TABETA, J. Chem. Soc., Chem. Commun., (1982) 1386-1388.
- 10 H. UEDA AND T. NAGAI, Chem. Pharm. Bull., 29 (1981) 2710-2714.
- 11 Y. Inoue, T. Okuda, and R. Chújó, *Carbohydr. Res.*, 116 (1983) c5–c8; Y. Inoue, T. Okuda, F.-H. Kuan, and R. Chújó, *ibid.*, 129 (1984) 9–20; Y. Inoue, F.-H. Kuan, Y. Takahashi, and R. Chújó, *ibid.*, 135 (1985) c12–c16.
- 12 M. MEHRING, *High Resolution NMR Spectroscopy in Solids*, Springer-Verlag, New York, 1976; J. Schaefer and E. O. Stejskal, in G. C. Levy (Ed.), *Topics in Carbon-13 NMR Spectroscopy*, Vol. 3, Wiley, New York, 1979, pp. 283–324; C. S. Yannoni, *Acc. Chem. Res.*, 15 (1982) 201–208.
- 13 P. COLSON, H. JENNINGS, AND I. C. P. SMITH, J. Am. Chem. Soc., 96 (1974) 8081-8087.
- 14 P. V. DEMARCO AND A. L. THAKKAR, J. Chem. Soc., Chem. Commun., (1970) 2-4.
- 15 R. BERGERON AND R. ROWAN, Bioorg. Chem., 5 (1976) 425-436.
- 16 D. J. WOOD, F. E. HRUSKA, AND W. SAENGER, J. Am. Chem. Soc., 99 (1977) 1735-1740.
- 17 M. KOMIYAMA AND H. HIRAI, Bull. Chem. Soc. Jpn., 54 (1981) 828-831.
- 18 Y. INOUE, T. OKUDA, Y. MIYATA, AND R. CHÚJÓ, Carbohydr. Res., 125 (1984) 65-76.
- 19 (a) P. C. MANOR AND W. SAENGER, J. Am. Chem. Soc., 96 (1974) 3630-3639; (b) B. KLAR, B. HINGERTY, AND W. SAENGER, Acta Crystallogr., Sect. B, 36 (1980) 1154-1165; (c) K. K. CHACKO AND W. SAENGER, J. Am. Chem. Soc., 103 (1981) 1708-1715; (d) K. LINDNER AND W. SAENGER, Acta Crystallogr., Sect. B, 38 (1982) 203-210.

- 20 K. HARATA, Bull. Chem. Soc. Jpn., 50 (1977) 1416-1424.
- 21 K. HARATA, H. UEDAIRA, AND J. TANAKA, Bull. Chem. Soc. Jpn., 51 (1978) 1627-1634.
- 22 V. J. BARTUSKA AND G. E. MACIEL, J. Magn. Reson., 42 (1981) 312-321.
- 23 D. L. VANDERHART, J. Magn. Reson., 44 (1981) 117-125.
- 24 J. SCHAEFER, E. O. STEJSKAL, AND R. BUCHDAHL, Macromolecules, 10 (1977) 384-405.
- 25 E. T. LIPPMAA, M. A. ALLA, T. J. PEHK, AND G. ENGELHARDT, J. Am. Chem. Soc., 100 (1978) 1929–1931.
- 26 W SAENGER, R. K. McMullan, J Fayos, and D. Mootz, Acta Crystallogr., Sect. B, 30 (1974) 2019–2028.
- 27 L. B. ALEMANY, D. M. GRANT, R. J. PUGMIRE, T. D. ALGER, AND K. W. ZILM, J. Am. Chem. Soc., 105 (1983) 2133–2141.
- 28 M. SUNDARALINGAM, Biopolymers, 6 (1968) 189-213.
- 29 D. M. GRANT AND B. V. CHENEY, J. Am. Chem. Soc., 89 (1967) 5315-5318.
- 30 B. V. CHENEY AND D. M. GRANT, J. Am. Chem. Soc., 89 (1967) 5319-5327.
- 31 R. H. ATALLA, J. C. GAST, D. W. SINDORF, V. J. BARTUSKA, AND G. E. MACIEL, J. Am. Chem. Soc., 102 (1980) 3249–3251.
- 32 W. L. EARL AND D. L. VANDERHART, J. Am. Chem Soc., 102 (1980) 3251-3252.
- 33 F. HORII, A. HIRAI, AND R. KITAMARU, Polym. Bull., 8 (1982) 163-170.
- 34 W L. EARL AND D. L. VANDERHART, Macromolecules, 14 (1981) 570-574.
- 35 R. L. Dudley, C. A. Fyfe, P. J. Stephenson, Y. Deslandes, G. K. Hamer, and R. H. Marchessault, *J. Am. Chem. Soc.*, 105 (1983) 2469–2472.
- 36 C A Fyfe, R. L. Dudley, P. J. Stephenson, Y. Deslandes, G. K. Hamer, and R. H. Marchessault, J. Macromol. Sci., Rev. Macromol. Chem. Phys., 23 (1983) 187–216.